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Dispersion relations, the rate of ener~  transfer, orthogonality and completeness relations and, also, the functions describing 
the vertical structure of two types of internal waves (perturbations localized close to the boundary and volume perturbations), 
which exist in an exponentially stratified medium contiguous to a homogeneous layer of finite thickness without any discontinuity 
in the density are calculated without recourse to the Boussinesq approximation. © 1998 Elsevier Science Ltd. All rights reserved. 

The general theory of waves in inhomogeneous media indicates the need for a more detailed description 
of the permissible periodic motions, taking account of the possibility of the simultaneous existence of 
both surface and volume modes (as an example, one may mention acoustic Rayleigh waves [1], surface 
electromagnetic waves [2] and the Tamm (surface) states of quantum mechanical particles [3]). A general 
approach [4] to the simultaneous description of volume and surface waves was proposed in [4] and an 
analysis of the orthogonality and completeness relations was presented. A more detailed analysis of 
the permissible forms of internal waves in a non-uniformly stratified medium, which models the typical 
states of natural systems (of the ocean and atmosphere), when there is a layer of a homogeneous fluid 
under or above a fluid of variable density without any discontinuity in the density at the boundary, is 
of interest. The analysis of the natural forms of motion of such a medium enable one to find the complete 
orthonormalized system of eigenfunctions (wave modes) and the corresponding dispersion relations 
which can be used to study the evolution and decay of arbitrary initial perturbations or to solve problems 
with sources [5]. 

The density distribution scheme considered here includes a layer of an ideal incompressible fluid of 
thickness a which is bounded below by a solid base at z = 0. On top of this layer, there is an exponentially 
stratified fluid which is unrestricted in height and has a buoyancy frequency N = ~/(g/A), where g is the 
acceleration due to gravity, which is directed opposite to the z axis. The unperturbed density distribution 
throughout the whole depth of the fluid can be expressed by the formula 

~Poo, 0 < z < a  
Po(Z) = [Pooe_~Z_a)t ^ ' z > a (1) 

that is, the fluid density is continuous in the boundary of the layer and A is the stratification scale. Such 
a density distribution is typical in the case of the atmospheres of planets and stars. 

A monochromatic perturbation with a frequency 0~, which is characterized by a variable velocity 
(ox, t~z), density p and pressure P, is described in the linear approximation by the equations 

iO~Po(Z) u x = " ~ P  I ~x ,  - iO~Po(Z)U z = " ~ P  I 3 z  - p g  

-io~p +u zdp01 d z  = 0, ~ u  x l a x  + ~ u  ~ I ~ z  = 0 

On eliminating all of the variables here apart from Vz and introducing the variable 

~u z, 0 < z < a  

u = Iv ze -gtz-~), z > a. I~ = 1/(2A) (2) 

we obtain, when not invoking the Boussinesq approximation, the equation 
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(b-~2~a2u~ax2+a2u~az2=~2u, c2=~2~~2 (3) 
The following mathematical formulation of the problem can therefore be given: it is required to 

find a function U(X, z) which satisfies the Laplace equation when 0 < z < a and, when z > a, satisfies 
Eq. (3) with the boundary condition u(x, 0) = 0 and is bounded when z -+ co such that the function 
U&X, z) = {u(x, z) when 0 < z < a and U(X, z)&‘(‘~) is continuously differentiable in the domain z > 0, 
--co <x< +oowhena <zco}. 

In accordance with the general approach (the method of separation of the variables), the solution 
of the problem is sought in the form of a wave perturbation localized close to the boundary of the 
homogeneous layer (the analogue of waves at an interface which decay exponentially with distance from 
it) 

i 

(Aeihoz + B.e-‘Q)eih, 0 <z c a 
ll= 

Cei)c(z-“p (4 
9 z>O, Imh>O 

as well as in the form of the usual internal waves [5] which propagate in the stratified fluid and are 
reflected from the homogeneous layer 

i 

(Ate iAiz + B,e -t~lz)ei~p~ 
, O<z<a 

U= 
c, [e-ip(z-a) + or(ppMz-dp ‘+, z>O, Imp=0 

where a(p) is the reflection coefficient. 
If the thickness of the homogeneous layer tends to zero, these waves become the well-known travelling 

internal waves. Their properties, including the geometry of reflection from a rigid plane boundary (taking 
account of dissipative effects), have been studied in detail in [6]. We note that the upper lines in (4) 
and (5) are particular solutions of Laplace’s equation while the lower lines are particular solutions of 
Eq. (3). Only the localized waves (4) will be considered in detail below. In the case of volume internal 
waves, only the final results will be formulated. 

Substituting the particular solution (4) into Eq. (3) and equating the determinant of the resulting 
homogeneous system of linear equations in the amplitudes to zero, we obtain two dispersion equations 
which relate ho, h and k 

k2+hi =o, (l-<2)k2+x2 =-p* (6) 

Expressing the velocity components u, and u, using (4) and taking account of their continuity when 
z = a and also the fact that the component U, is equal to zero when z = 0, we obtain 

ih,(P@ + e-l*) = (p + rX)(e’* - e”‘*) (7) 

To be specific, we shall consider the localized wave perturbations which propagate to the right along 
the x axis (k > 0) and then, from (6), we have 

ha = ik, h = ip,(k), p*(k) = Jm (8) 

which, after substitution into (7), gives 

p-l@)= kcthka (9) 

whereupon the relation between o and k is established, that is, the dispersion relation for the localized 
waves 

02(k)=gk/(cthka-kA/sh2ku) (IO) 

The right-hand side of Eq. (10) is an even function of k and the assumption that k is positive imposes 
no restriction on the generality of the subsequent treatment. 

Localized perturbations with a dispersion (10) do not exist for all k as, since o2 > 0 and k cth ka > 0, 
the left-hand side of Eq. (9) and the expression in parentheses in (10) must be positive. These conditions 
are equivalent to the inequalities a > A, k < kc, where kc is a root of the equation k,A cth kp = 1 and, 
as follows from (lo), o(k,) = N. 
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The condition for a non-negative value of  the expression under the square root sign in (8) is 
automatically satisfied since, by virtue of (10), it is equivalent to the inequality (~t - k cth ka) 2 ~ 0. 

For small k, the dispersion relation takes the form 

to = kv, v = a~g I(a-  A) 

when the phase and group velocities are independent of  the wavelength, while, for large k, it tends 
asymptotically to the function to = ~[(kg). Since the domain of existence of the localized waves is bounded 
by the frequencies 0 < to < N, the asymptotic value is not achieved and, on the boundary of the domain 
of existence, there is a finite jump Ak between the point of the dispersion characteristic (10) and its 
asymptote. 

It should be emphasized that the existence of localized waves is due to the fact that we have dispensed 
with the Boussinesq approximation (when an additional internal length scale A appears in the problem). 
Localized waves and lxavelling volume waves exist over the same frequency range. 

Using the expressions for the volume energy density w and the energy flux density J [7], we can 
introduce a longitudinal energy density W and a frontal energy flux density S, which are natural in the 
case of  localized states 

0 0 

as well as the rate of energy transfer Ve = S/W. Here, we note that Jz = 0 in the case of the localized 
states being investigal~ed, that is, the energy is strictly transferred in the direction of the x axis. Detailed 
calculations show thai; the rate of energy transfer is identical to the group velocity of the localized waves, 
that is, ue = t)g = a+x~(k)/ak. In this case, the fluid particles in the localized wave move along closed 
elliptic trajectories where the ratio of  the vertical and horizontal axes depends on z 

I=tmka, (11) 

The vertical displace:rnents on the bottom are equal to zero (the particles move horizontally) and these 
displacement increase as z increases, attaining a maximum value when z = a, after which the ratio of 
the axes of the displacement ellipse retain a constant value th ka above, in the stratified part of the 
fluid. 

Treatment of the three-dimensional problem when there are no sources leads to its following formula- 
tion: it is required to find a function u(x, y, z) which satisfies Laplace's equation when 0 < z < a and 
the equation 

(I -~2)Alu+a2u/az2 = lt2u, a I = 0 2 lax 2 + 0  2 i~y2 (12) 

when z > a with the boundary condition u(x,y, 0) = 0 and is bounded when z -~ oo such that the function 
Oz(X,y, z) = u(x,y, z) when 0 < z < a and, when a < z < ~, u(x,y, z)e ~'(~-~) is continuously differentiable 
in the domain z > 0, --oo < x,y < +~. 

Since there is a distinguished direction (the z axis) which has been separated out in the problem, it 
is natural to separate the z and (x, y) variables. Assuming that u = F(x, yff(z), substituting this into 
Laplace's equation and Eq. (12) and separating the variables, we obtain that the functions f(z) and 
F(x, y) satisfy the equations 

d2f /dz :  +k~of=O, 0 < z < a ,  d2fldzZ+k2zfffiO, a < z < ~  

AIF-k~oF =O, AIF- (k  t2 + k~)l( l - ;2)  F =O (13) 

where k 2 and ~ are separation constants for Laplace's equation and Eq. (12) respectively. The last 
two equations in (113) must be satisfied for any z. This condition specifies the relation between ~ and 

k~o = (Ix ~ + k~)/(1 _~2) (14) 

The general solutions of  the first two equations in (13) have the form 
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f ~. ClO cika:Oz "4" C20~, -iltzOz , 0 < Z < a 

f - ¢1 e i t tz  + c2 e- ikzz ,  a < z < ~, 
(15) 

Using the fact that u is equal to zero when z = 0 and the continuous differentiability of t~ when z = 
a, we can find the relation between the coefficients Cio, c20, c~ and c2. We obtain 

cl0 = -c20  = (c, + c 2) 1 (2 i s in  k~oa)  

(16) 
ik o ( Ct + c2 ) ctg k oa = (tt + ikDq + (tt - ikDc2 

The problem is now to elucidate the values which can be taken bykz. In the general case, kz is a complex 
number. If Im kz ~ 0, then one of the amplitudes, cl or c2, vanish in order that the magnitude of u 
should not increase in an unbounded manner when z -~ ~. If, however, Im kz = 0, then each of the 
amplitudes Cl and c2 may be non-zero since, in this case, u does not increase without limit. We now 
consider these cases separately. 

Suppose that kz = ~., Im ;~ > 0. In this case, we must have c2 = 0 and u decreases exponentially with 
distance from the level z = a, which corresponds to localized states. Assuming that k=.o = ik and using 
Eqs (14) and (16), we obtain relation (9). 

Suppose that kz = p ,  Imp = 0. In this case cl, c2 ~ 0 and it is found from (16) that 

a(p)  - cl = ik~O -(~t  + ip)thk~°a 

c2 ik~o - (tt - ip ) th k,oa 

where kz0 is expressed in terms ofp using Eq. (14). Here, the perturbation consists of a wave e -#'z which 
is incident on the boundary z = a and a wave ~t(p)e 'pz which is reflected from it so that this case corres- 
ponds to volume waves. Here, p is any positive number. 

It follows from the foregoing treatment that, in fluid domains where there are no sources, the total 
field can be represented in the form of the superposition of the general solutions which have been found 
for the localized and volume waves 

u(x, y, z) = ~ (x, Y){Ps (z) + ~ Fv (x, y, P)CPv (z, p)dp (17) 
o 

where the functions Fs(x, y) and Fv(x, y, p)  satisfy the equations 

(A ! +k2(co))F.,(x,y) = O, (A I +k2(o)))Fv (x ,y ,p)  = 0 (18) 

The relation k(¢o) is given by (10) and the longitudinal wave number of the volume waves kp is given 
by the formula 

k2 = (p2 + tt2)1( 2 _ l)  

The specific form of the functions Fs(x, y) and Fv(x, y, p),  which define the longitudinal structure of 
the localized and volume waves, is determined by the perturbation sources and the boundary conditions 
with respect to the horizontal coordinates, taking account of the formulation of the specific problem. 

The functions %(z) and ¢pv(z, p),  which describe the vertical structure of the localized and volume 
perturbations, have the form 

[ 2t~,($t-l~)sh2ka] ~'shkz/shka, 0 < z < a  

2ip sh kpz 

-J~ - kp chk (19) %(z,p)=[2ot(p)]  t pa - (~ t+ ip ) shkpa"  0 < z < a  

[e -p(z-a) + ot(p)e ip(z-a), z > a 

= i(ll - k cth ka), el(p) -- - ke - (11 - in)  th kpa 
kp - <tt + ip) th kpo 
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They satisfy the orthogonality and completeness relations 

~h(z)92(z)dz = 1, ~h(z)%(z)¢~ (z,p)dz =O 
o o 

~h(z)% (z,p)% (z,q)dz = 8(p-q); p,q > 0 
o 

(20) 

with weighting function 

h(z) I ( 1 - ~ 2 ) '  O < z < a  

=[I, z>a 

The completeness relation (the last equality of (20)) proves the validity of representation (17) and 
the orthogonality relations (the first three equalities of (20)) enable one, using a known distribution 
u(x, y, z), to separate out the localized and volume fields and, also, to find the amplitudes Fs(x, y) and 
Fv(x, y, p) using the formulae 

= Th(z)u<x,Y,Z)~Ps(z)dz, Fu = Thtz ,(x,y,z  <z,p  
0 0 

(21) 

The orthogonality relations also enable one to solve the problem of the excitation of the field by a 
specified source distribution in a very convenient manner. 

It is characteristic in the case of an ocean and internal reservoirs that the mixed layer is located above 
the stratified fluid and has a free surface. Localized waves also arise here and the dispersion of these 
waves is described by the implicit equation 

]~ , tJ.x v kgchka-~2 shka 

~- ~'~J = ~ 0) 2 chka -kgshka (22) 

For these waves to o:ist, it is not obligatory that the Boussinesq approximation be rejected. Unlike the 
localized bottom waves considered above, they only arise when to > N. In the case of a considerable thick- 
ness of the mixed layer, these waves are identical to the waves on the free surface of a homogeneous fluid. 

The above analysis shows that, even in a model of an ideal medium, specific surface waves exist at 
the boundary of the layer of homogeneous fluid contiguous to the stratified layer, even when there is 
no discontinuity in the density at its boundary. It is also important that localized surface states arise 
over the same frequency rage (co < N) in which the volume waves are propagating, unlike the case of 
surface perturbations at a density discontinuity, which only exist when to > N. 

Taking account of dissipative factors leads to a further complication of the flow pattern and to the 
appearance of additional boundary flows with characteristic localization length scales, which differ from 
the wave scales. 
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